Compost in Rural New Mexico: Why it matters & what it will take

Integrating organic amendments into rural agricultural operations and the economic considerations of compost market creation in NM

By Amy Larsen & Jessie Hook

Committed to the future of raral communities

Presentation Agenda:

- Introduction (Amy)
 - ➤ About Quivira
- Organic Amendments/Applications
 Projects
- Soil Health Principles & ASP System
- Circular Economy of Waste (Jessie)
 - Economics of ASP vs Landfill
- Closing, Questions
- Brief Survey & Sign-in

About Quivira & Carbon Ranch Initiative (CRI) Team:

Quivira Coalition Mission:

To build resilience on western landscapes by fostering ecological, economic and social health through education, innovation, collaboration.

CRI Team Goal:

Focus on healthy soil and productive use of waste by building the capacity of producers through research, engagement, and technical support

Organic Amendments: Production Rangelands

Several grant-funded projects aim to build producer capacity around compost, vermicompost, biochar **PRODUCTION**

Organic Amendments: Application on Rangelands

Other projects focused on biochar, compost, bale grazing **APPLICATION** on rangelands.

Soil Health Principles A Foundational Framework to Quivira's Work

Soil Health Principles

Organic Amendments impact 3 out of 4 Healthy Soil Principles

How to use "waste" productively? Creating Closed Loop Systems: Organic Waste to Asset

Produce compost from wood chips, manure, food scraps, etc.

Produce biochar from woody or brush waste

Application to improve *soil health*

A Compost System for Rural NM: Aerated Static Piles (ASP) Requirements, specifications & use for producers

Option that is **low cost, low maintenance, & time efficient** to process.

Requires no turning and is **mobile, modular & scalable. Batch complete in 30-60 days,** then cures.

Requirements:

- Footprint: 25' wide x 25-50' long
- Needs water and electric source (solar?)
- Requires tractor or skidsteer to mix & move
- Finished product can be spread from truck by hand, but manure spreader much easier.

Circular Economy of Waste: Taos County Case Study

Pg 10

Comparing Options for "Waste": Regional Landfill, Inactive Organic Piles & Aerated Static Piles

Waste to Landfill "S.W.O.T" Analysis:

Exploring system <u>s</u>trengths, <u>w</u>eaknesses, <u>o</u>pportunities and <u>t</u>hreats

Landfill	Landfill	Landfill	Landfill
STRENGTHS	WEAKNESSES	OPPORTUNITIES	THREATS
 → Familiar → Less management → Less equipment 	 → Transport cost → Landfill fee 	→ Centralized municipal composting	 → Air & water pollution → Financial burden to individuals and county → Space limitations
ASP	ASP	ASP	ASP
STRENGTHS	WEAKNESSES	OPPORTUNITIES	THREATS
 → Soil amendment → Smaller footprint 	 → Upfront costs → Requires maintenance → Sales Certification cost 	 → Potential revenue → Input cost reduction (fertilizers, pesticides) → Improves soil health (microbial activity & water retention) 	 → Water & Electricity → NIMBY (Not In My Back Yard) from adjacent land users (smells)

ASP vs. Going to the Landfill Net Income Projections Net Income calculates revenue - expenses

ASP Costs	Assumption & Cost Details	Upfront Cost (Year 1)
ASP Set Up Items	P Set Up Items Purchased New: HP Blower, Timer, Perforated Pipe, Compost Thermometer, Blower Cover & Shovels	
Feedstock Collection Labor & Gas	2 people, 2 hours/month at \$17/ hr, 12 months of 30 miles/month	-\$816 + -\$73
ASP Labor & Maintenance	2hrs loading and 2h unloading, 2 people \$17/hr, 8 times/sessions	-\$544
Utility Trailer	Standard 5x10x1.5	-\$2,500
Kubota Tractor & Fuel	Relatively New, BS23X + ¾ per gallon/hr , at \$4.95/gallon	-\$25,000 + -\$178.20
Sales	Small town context marketing budget: \$50/month, 8 hrs of labor, 1 person at \$20/hr	-\$2,520
Certification with NMED	Assuming NMRC member and small business, no hotel costs associated	-\$449
TOTAL ASP COSTS (Year 1)	Sum of all costs	-\$32,562
ASP Revenue	Assumptions & Revenue Details	Total Income
Compost Value (Reflected in sales or added value to land)	100 yds of feedstock, 45% return of compost, producing 45 cubic yds of finished compost, valued at \$100 per cubic yds, YR01 sales = 4	\$18,000
ASP NET INCOME, YEAR 1	Net Income = Costs - Revenue	-\$14,562
Pg 15	·	

Net Present Value (NPV)

The value of an ASP investment over time through compost sales

BLUE - ASP Net Income

ORANGE - Disposing Waste at the Landfill Net Income

NPV accounts for the net income each year and depreciation (the reduction of an asset in value over time).

Benefits of Compost Markets: Economic, Environmental and Social Shared Value

Economic Benefits

- ≻ Revenue
- Input Cost Reduction
 - Producers & County
- Potential for local private and public collaboration and <u>shared economic value</u>

Environmental Benefits

- Soil Health Improvement
 - Aiding in resiliency
- Organics diversion:
 - Dramatically reduces emissions & pollutants
 - Increases landfill capacity

Social Benefits

- <u>Shared value</u> of community, revenue & land resiliency
- Tangible and local emissions reduction tactic
- Local municipal revenue potential through centralized composting

Resources...

Stay tuned for upcoming case study...

Exploring the Costs and Benefits of Compost Markets in Rural Northern New Mexico

Check out these technical guides online... https://quiviracoalition.org/techguides/

Thank you & Questions

Amy Larsen

Carbon Ranch Initiative Planner/Manager

Jessie Hook

Sustainability Analyst Intern & MBA in Sustainability Student

www.quiviracoalition.org carbonranch@quiviracoalition.org

