#### SCS ENGINEERS



### Organics Diversion, Landfill Gas Generation, and Rulemaking



September 25, 2018 Presented by: David Mezzacappa, P.E.

# Organics and Landfill Gas/Compliance

# **ORGANICS DIVERSION**

Air Compliance (Rules) Greenhouse Gas/Emissions

Landfill Gas Generation (Future)

### Air Compliance (Rules)



# New Source Performance Standards

- Federal rule
- MSW landfills
- Main driver for landfill gas collection and control systems
- Finalized in 1996
- New NSPS proposed in 2014
- New NSPS finalized 2016

## **NSPS** Rule Proposal and Finalization

More comments related to organics diversion than any other facet of the 2014 proposed rule

# Proposed 2014 NSPS Rule (Finalized 2016)

Modeling Adjustments

- Current rule uses L<sub>o</sub> of 170 m<sup>3</sup>/Mg
  - -5,458 cubic feet methane per ton of waste
- Proposed adjustments for organic content
  - Between 1990 and 2015
  - From 102.6  $m^3/Mg$  to 75.3  $m^3/Mg$
  - AP-42 default is  $100 \text{ m}^3/\text{Mg}$
- GHG rule already allows for L<sub>o</sub> adjustments

# Nationwide?



7

U.S. EPA, Advancing Sustainable Materials Management: 2015 Fact Sheet

# 2014 EG Rulemaking Notice

- NSPS rule proposed in 2014
- Advanced notice "existing" landfill rules 2014
- Preamble EPA did not require materials separation in 1996
- Soliciting ideas to encourage organic diversion
- RCRA and local regulations more appropriate vehicle
- Discussed exemption for landfills that diverted 100 percent of organics

# 2015 EG Rule

- Wide range of comments
  - Many comments against mandating diversion
  - 100% diversion not reasonable
  - Tier 4 and wellhead flexibilities help
  - Invited other flexibilities that might help
- Concluded that organics diversion not part of a well-designed, installed, and operated GCCS
- Bottom line EPA maintained prior stance
- Showed this will be a continued issue in rulemaking

# 2016 Final NSPS/EG Rules

- Cites flexibilities as ways to allow for GCCS operation with declining gas flow from less organics
- Did discuss organic covers as a way to decrease emissions as similar practice to organic diversion
- Commenters discussed that Tier 4 surface scans would benefit

## Yard Waste Bans

- Help drive the composting industry
- In 2013 25 states had yard waste disposal bans
- Seven states, including several in the Southeast and Great Lakes areas allow yard waste in landfills with LFGE
  - Yard waste more fuel for LFGE
  - However more LFG also more GHG
- Industries, groups, and environmentalists on all sides of issue

### Landfill Gas Generation

# How much will diversion decrease landfill gas reserves?

# Impacts on Landfill Gas Generation

- Growth in recycling, composting, and conversion of organic wastes results in:
  - Historic and future changes in organic MSW disposal rates and composition
  - -Lower LFG generation and recovery rates
  - Reduced methane fuel supply for LFGE projects
  - Implications for GHG emissions reduction

# Study Purpose and Methods

- Document historical composition changes in MSW diverted and disposed at U.S. landfills
  - Focus on organic MSW composition (LFG source)
- Forecast organic MSW disposal in U.S. landfills (waste model) under:
  - <u>Baseline</u> scenario, with growth in diversion rates based on recent trends
  - <u>Mid-range</u> and <u>High</u> diversion scenarios with flat and declining organics disposal rates
- Estimate LFG generation (<u>LFG model</u>)
- Evaluate effects of organics diversion scenarios

# MSW Composition Data

- U.S. EPA data (Dec. 2016)
  - Composition of U.S. MSW generated, diverted, combusted at WTE facilities, and disposed in landfills during 2000-2014
- EREF (2015) total MSW data correction for 2013 applied to EPA data for all years
  - MSW generation tonnage was 50% higher
  - MSW disposal tonnage was 88% higher
  - MSW WTE tonnage was 31% lower
  - MSW diversion tonnage was 22% higher, but since generation was 50% higher, diversion % of generated tons was lower than EPA shows

### 2000-2014 U.S. Organic MSW Disposal Rates



### Baseline U.S. Organic MSW Disposal Forecast



18% increase in organic MSW disposal between 2016 and 2032

### Mid-Range Disposal Scenario



2% decrease in organic MSW disposal between 2016 and 2032

### High-Range Disposa Scenario



45% decrease in organic MSW disposal between 2016 and 2032

# LFG Generated from U.S. MSW Disposed 2000-2032



### LFG Generation – Wet Climate Site Baseline Disposal = 19M Tons 2000-2032 vs. High Diversion vs. 90% Organics Diversion



## Impacts of Waste Diversion

- Waste diversion is a long-term GHG emissions reduction strategy (leading us to final section)
  - Historical WIP limits effects of future diversion on emissions reduction
  - High diversion rate increases required to bend down LFG generation curve
  - Large effects at national scale are many years away
- Individual sites can have more immediate impacts with organics bans

## Importance of Landfill Methane

- Landfill methane collection & combustion yields large, immediate GHG emissions reduction
- Maximize reductions by achieving high collection efficiency & by methane utilization
- Using the landfill gas to offset other types of power generation



# Greenhouse Gas/Emissions





# California Methane/GHG Rules



- AB 32 California Global Warming Solutions Act (2006)
  Mandatory GHG reporting rule
  Cap-and-trade
  Compliance offset program (not landfills, nothing voluntary)
- Driver for AB 341/AB 1826 (mandatory recycling)
- Renewable power to 50% by 2030
- SB 32, codified a 2030 GHG emissions reduction target of 40% below 1990 levels

# Landfill Methane Rule

### ~90% of CA landfills - required gas systems

- Requires owners and operators of certain uncontrolled MSW landfills to install GCCS, and requires existing and newly installed GCCS to operate in an optimal manner
- Example: Landfills that received waste after 1977, with >450,000 (tons capacity), and certain LFG heat input capacity must install GCCS or quarterly surface monitoring shows no measured concentration of LFG >200 ppm
- NSPS is much higher (2.5 million Mg capacity/500 ppm)

# California Methane/GHG Rules

### SB 1383

Implementation started 1/1/2018

### Short-lived climate pollutants (SLCP):

 Landfill methane emissions via diversion of organic material from the waste stream

#### Emission Reduction Targets Below 2013 levels by 2030

- Methane (CH4) by 40%
- Hydrofluorocarbons (HFC) by 40%
- Anthropogenic Black Carbon by 50%
- Reduce organics waste in landfills

Targeted organics disposal

A 50% reduction in the level of the statewide disposal of organic waste from the 2014 level by 2020

A 75% reduction in the level of the statewide disposal of organic waste from the 2014 level by 2025
20% of edible food to be recovered for human consumption

# **Upshot of These Rules**

- Greenhouse gas emissions reductions are the goal
- As such, organics have no place in landfills
- Almost all landfills should be collecting and destroying their gas efficiently

# Landfills in the USEPA GHGRP

- MSW Landfills Report under Subpart HH
  - Some under Subpart C as well (turbines, engines, etc.)
- 14.9% of Reporting Facilities make up only 2.9% of Reported Emissions



# Landfills in the GHG Inventory

- Inventory shows significant decrease in landfill emissions since 1990
- Variance between Inventory and GHGRP data of around 22% on average
- Industry recommends:
  - Use of GHGRP validated emissions information
  - Use of OX factors from GHGRP
  - Use of reported HH-6 or HH-8 from reporter selection
  - Use of 7% estimate for non-reporting sites

# Summary

- Organics diversion will continue to impact landfill air rules
  - Less with current administration (can change quickly!)
- Organics diversion impacts LFG generation
   Takes a lot
- Greenhouse gas may drive organics diversion requirements
  - -More efficient collection most effective

### **QUESTIONS?**



## David Mezzacappa, P.E. <u>DMezzacappa()</u>SCSEngineers.com SCS Engineers, Bedford, Texas (817) 571-2288